Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Microbiol ; 8(10): 1820-1833, 2023 10.
Article in English | MEDLINE | ID: mdl-37749254

ABSTRACT

The pathogenic and cross-species transmission potential of SARS-CoV-2-related coronaviruses (CoVs) remain poorly characterized. Here we recovered a wild-type pangolin (Pg) CoV GD strain including derivatives encoding reporter genes using reverse genetics. In primary human cells, PgCoV replicated efficiently but with reduced fitness and showed less efficient transmission via airborne route compared with SARS-CoV-2 in hamsters. PgCoV was potently inhibited by US Food and Drug Administration approved drugs, and neutralized by COVID-19 patient sera and SARS-CoV-2 therapeutic antibodies in vitro. A pan-Sarbecovirus antibody and SARS-CoV-2 S2P recombinant protein vaccine protected BALB/c mice from PgCoV infection. In K18-hACE2 mice, PgCoV infection caused severe clinical disease, but mice were protected by a SARS-CoV-2 human antibody. Efficient PgCoV replication in primary human cells and hACE2 mice, coupled with a capacity for airborne spread, highlights an emergence potential. However, low competitive fitness, pre-immune humans and the benefit of COVID-19 countermeasures should impede its ability to spread globally in human populations.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Cricetinae , Humans , Animals , Mice , Host Specificity , Pangolins , SARS-CoV-2/genetics , COVID-19/prevention & control , Antibodies, Viral , COVID-19 Vaccines , Mice, Inbred BALB C
2.
Proc Natl Acad Sci U S A ; 120(24): e2210113120, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37279279

ABSTRACT

Using scRNA-seq and microscopy, we describe a cell that is enriched in the lower airways of the developing human lung and identified by the unique coexpression of SCGB3A2/SFTPB/CFTR. To functionally interrogate these cells, we apply a single-cell barcode-based lineage tracing method, called CellTagging, to track the fate of SCGB3A2/SFTPB/CFTR cells during airway organoid differentiation in vitro. Lineage tracing reveals that these cells have a distinct differentiation potential from basal cells, giving rise predominantly to pulmonary neuroendocrine cells and a subset of multiciliated cells distinguished by high C6 and low MUC16 expression. Lineage tracing results are supported by studies using organoids and isolated cells from the lower noncartilaginous airway. We conclude that SCGB3A2/SFTPB/CFTR cells are enriched in the lower airways of the developing human lung and contribute to the epithelial diversity and heterogeneity in this region.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Lung , Humans , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Stem Cells/metabolism , Cell Differentiation , Cell Lineage , Organoids , Epithelial Cells/metabolism
3.
bioRxiv ; 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36824904

ABSTRACT

The ontogenetic composition of tissue-resident macrophages following injury, environmental exposure, or experimental depletion can be altered upon re-establishment of homeostasis. However, the impact of altered resident macrophage ontogenetic milieu on subsequent immune responses is poorly understood. Hence, we assessed the effect of macrophage ontogeny alteration following return to homeostasis on subsequent allergic airway responses to house dust mites (HDM). Using lineage tracing, we confirmed alveolar and interstitial macrophage ontogeny and their replacement by bone marrow-derived macrophages following LPS exposure. This alteration in macrophage ontogenetic milieu reduced allergic airway responses to HDM challenge. In addition, we defined a distinct population of resident-derived interstitial macrophages expressing allergic airway disease genes, located adjacent to terminal bronchi, and reduced by prior LPS exposure. These findings support that the ontogenetic milieu of pulmonary macrophages is a central factor in allergic airway responses and has implications for how prior environmental exposures impact subsequent immune responses and the development of allergy.

4.
Cell ; 182(2): 429-446.e14, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32526206

ABSTRACT

The mode of acquisition and causes for the variable clinical spectrum of coronavirus disease 2019 (COVID-19) remain unknown. We utilized a reverse genetics system to generate a GFP reporter virus to explore severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenesis and a luciferase reporter virus to demonstrate sera collected from SARS and COVID-19 patients exhibited limited cross-CoV neutralization. High-sensitivity RNA in situ mapping revealed the highest angiotensin-converting enzyme 2 (ACE2) expression in the nose with decreasing expression throughout the lower respiratory tract, paralleled by a striking gradient of SARS-CoV-2 infection in proximal (high) versus distal (low) pulmonary epithelial cultures. COVID-19 autopsied lung studies identified focal disease and, congruent with culture data, SARS-CoV-2-infected ciliated and type 2 pneumocyte cells in airway and alveolar regions, respectively. These findings highlight the nasal susceptibility to SARS-CoV-2 with likely subsequent aspiration-mediated virus seeding to the lung in SARS-CoV-2 pathogenesis. These reagents provide a foundation for investigations into virus-host interactions in protective immunity, host susceptibility, and virus pathogenesis.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/pathology , Coronavirus Infections/virology , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Respiratory System/virology , Reverse Genetics/methods , Aged , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , Cell Line , Cells, Cultured , Chlorocebus aethiops , Coronavirus Infections/immunology , Coronavirus Infections/therapy , Cystic Fibrosis/pathology , DNA, Recombinant , Female , Furin/metabolism , Humans , Immunization, Passive , Lung/metabolism , Lung/pathology , Lung/virology , Male , Middle Aged , Nasal Mucosa/metabolism , Nasal Mucosa/pathology , Nasal Mucosa/virology , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/immunology , Respiratory System/pathology , SARS-CoV-2 , Serine Endopeptidases/metabolism , Vero Cells , Virulence , Virus Replication , COVID-19 Serotherapy
5.
Am J Pathol ; 188(5): 1149-1160, 2018 05.
Article in English | MEDLINE | ID: mdl-29476724

ABSTRACT

Improved tools have led to a burgeoning understanding of lung regeneration in mice, but it is not yet known how these insights may be relevant to acute lung injury in humans. We report in detail two cases of fulminant idiopathic acute lung injury requiring extracorporeal membrane oxygenation in previously healthy young adults with acute respiratory distress syndrome, one of whom required lung transplantation. Biopsy specimens showed diffuse alveolar injury with a striking paucity of alveolar epithelial regeneration, rare hyaline membranes, and diffuse contiguous airspace lining by macrophages. This novel constellation was termed diffuse alveolar injury with delayed epithelization. In addition, mirroring data from murine models of lung injury/regeneration, peribronchiolar basaloid pods (previously described as squamous metaplasia) and ciliated bronchiolarization were identified in these patients and in 39% of 57 historical cases with diffuse alveolar damage. These findings demonstrate a common and clinically relevant human disease correlate for murine models of severe acute lung injury. Evidence suggests that peribronchiolar basaloid pods and bronchiolarization are related spatially and temporally and likely represent overlapping sequential stages of the response to severe distal airway injury.


Subject(s)
Acute Lung Injury/pathology , Extracorporeal Membrane Oxygenation , Lung Transplantation , Pulmonary Fibrosis/pathology , Regeneration/physiology , Acute Lung Injury/surgery , Acute Lung Injury/therapy , Adult , Female , Humans , Male , Treatment Outcome
7.
Cancer Cell ; 31(1): 35-49, 2017 01 09.
Article in English | MEDLINE | ID: mdl-28041841

ABSTRACT

Loss-of-function mutations in SWI/SNF chromatin-remodeling subunit genes are observed in many cancers, but an oncogenic role for SWI/SNF is not well established. Here, we reveal that ACTL6A, encoding an SWI/SNF subunit linked to stem cell and progenitor cell function, is frequently co-amplified and highly expressed together with the p53 family member p63 in head and neck squamous cell carcinoma (HNSCC). ACTL6A and p63 physically interact, cooperatively controlling a transcriptional program that promotes proliferation and suppresses differentiation, in part through activation of the Hippo-YAP pathway via regulators including WWC1. Ectopic ACTL6A/p63 expression promotes tumorigenesis, while ACTL6A expression and YAP activation are highly correlated in primary HNSCC and predict poor patient survival. Thus, ACTL6A and p63 collaborate as oncogenic drivers in HNSCC.


Subject(s)
Actins/physiology , Adaptor Proteins, Signal Transducing/physiology , Carcinoma, Squamous Cell/etiology , Chromosomal Proteins, Non-Histone/physiology , DNA-Binding Proteins/physiology , Head and Neck Neoplasms/etiology , Membrane Proteins/physiology , Phosphoproteins/physiology , Animals , Carcinoma, Squamous Cell/mortality , Cell Line, Tumor , Cell Proliferation , Head and Neck Neoplasms/mortality , Hippo Signaling Pathway , Humans , Intracellular Signaling Peptides and Proteins/physiology , Mice , Prognosis , Protein Serine-Threonine Kinases/physiology , Squamous Cell Carcinoma of Head and Neck , Transcription Factors , Transcriptome , YAP-Signaling Proteins
9.
Stem Cell Reports ; 1(3): 248-65, 2013.
Article in English | MEDLINE | ID: mdl-24319661

ABSTRACT

Cell-fate decisions and pluripotency are dependent on networks of key transcriptional regulators. Recent reports demonstrated additional functions of pluripotency-associated factors during early lineage commitment. The T-box transcription factor TBX3 has been implicated in regulating embryonic stem cell self-renewal and cardiogenesis. Here, we show that TBX3 is dynamically expressed during specification of the mesendoderm lineages in differentiating embryonic stem cells (ESCs) in vitro and in developing mouse and Xenopus embryos in vivo. Forced TBX3 expression in ESCs promotes mesendoderm specification by directly activating key lineage specification factors and indirectly by enhancing paracrine Nodal/Smad2 signaling. TBX3 loss-of-function analyses in the Xenopus underline its requirement for mesendoderm lineage commitment. Moreover, we uncovered a functional redundancy between TBX3 and Tbx2 during Xenopus gastrulation. Taken together, we define further facets of TBX3 actions and map TBX3 as an upstream regulator of the mesendoderm transcriptional program during gastrulation.


Subject(s)
Cell Differentiation , Embryonic Stem Cells/cytology , Gastrulation/genetics , Mesoderm/growth & development , T-Box Domain Proteins/biosynthesis , Animals , Cell Lineage , Gene Expression Regulation, Developmental/genetics , Mesoderm/metabolism , Mice , Nodal Protein/biosynthesis , Nodal Protein/genetics , Smad2 Protein/genetics , T-Box Domain Proteins/genetics , Xenopus
10.
Nucleic Acids Res ; 39(9): 3574-81, 2011 May.
Article in English | MEDLINE | ID: mdl-21247880

ABSTRACT

The miR-290 cluster is expressed in embryonic stem cells (ESCs) and is important for the maintenance of pluripotency, but little is known about the mechanisms regulating the early embryonic microRNA cluster (EEmiRC) expression. Here we report the identification of a 332-bp intragenic enhancer (IE) able to modulate the transcription of the mouse EEmiRC locus, presumably through binding of transcription modulators like Oct3/4, Sox2 and CTCF. This IE also contains a CpG island showing a differential pattern of DNA and histone methylation marks during differentiation of ESCs, which places EEmiRC in a novel regulatory feedback loop with DNA methylases. Deletion of IE significantly reduced the transcription of the EEmiRC, further proving the importance of this region in regulating the expression of EEmiRC.


Subject(s)
Embryonic Stem Cells/metabolism , Enhancer Elements, Genetic , Epigenesis, Genetic , MicroRNAs/genetics , Animals , CCCTC-Binding Factor , Cell Differentiation , Cells, Cultured , Mice , Octamer Transcription Factors/metabolism , Pluripotent Stem Cells/metabolism , Repressor Proteins/metabolism , SOXB1 Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...